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Abstract

Many instances of algorithmic bias are caused by subpopulation shifts. For example,
ML models often perform worse on demographic groups that are underrepresented
in the training data. In this paper, we study whether enforcing algorithmic fairness
during training improves the performance of the trained model in the target domain.
On one hand, we conceive scenarios in which enforcing fairness does not improve
performance in the target domain. In fact, it may even harm performance. On the
other hand, we derive necessary and sufficient conditions under which enforcing
algorithmic fairness leads to the Bayes model in the target domain. We also
illustrate the practical implications of our theoretical results in simulations and on
real data.

1 Introduction

There are many instances of distribution shifts causing performance disparities in machine learning
(ML) models. For example, Buolamwini and Gebru [7] report commercial gender classification
models are more likely to misclassify dark-skinned people (than light-skinned people). This is (in
part) due to the abundance of light-skinned examples in training data. Similarly, pedestrian detection
models sometimes have trouble recognizing dark-skinned pedestrians [22]. Another prominent
example is the poor performance of image processing models on images from developing countries
due to the scarcity of images from such countries in publically available image datasets [20].

Unfortunately, many algorithmic fairness practices were not developed with distribution shifts in
mind. For example, the common algorithmic fairness practice of enforcing performance parity on
certain demographic groups [1, 11] implicitly assumes performance parity on training data generalize
to the target domain, but distribution shifts between the training data and target domain renders this
assumption invalid.

In this paper, we consider subpopulation shifts as a source of algorithmic biases and study whether
the common algorithmic fairness practice of enforcing performance parity on certain demographic
groups mitigate the resulting (algorithmic) biases in the target domain. Such algorithmic fairness
practices are common enough that there are methods [1, 2] and software (e.g. TensorFlow Constrained
Optimization [10]) devoted to operationalizing them. There are other sources of algorithmic biases
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(e.g. posterior drift [17]), but we focus on algorithmic biases caused by subpopulation shifts in this
paper. Our main contributions are:

1. We propose risk profiles as a way of summarizing the performance of ML models on subpopula-
tions. As we shall see, this summary is particularly suitable for studying the performance of risk
minimization methods.

2. We show that enforcing performance parity during training may not mitigate performance dispari-
ties in the target domain. In fact, it may even harm overall performance.

3. We decompose subpopulation shifts into two parts, a recoverable part orthogonal to the fair con-
straint and a non-recoverable part, and derive necessary and sufficient conditions on subpopulation
shifts under which enforcing performance parity improves performance in the target domain (see
Section 4.4).

One of the main takeaways of our study is a purely statistical way of evaluating the notion of
algorithmic fairness for subpopulation shift: an effective algorithmic fairness practice should improve
overall model performance in the target domain. Our theoretical results characterize when this occurs
for risk-based notions of algorithmic fairness.

2 Problem setup

We consider a standard classification setup. Let X ⊂ Rd be the feature space, Y be the set of
possible labels, and A be the set of possible values of the sensitive attribute. In this setup, training
and test examples are tuples of the form (X,A, Y ) ∈ X × A × Y . If the ML task is predicting
whether a borrower will default on a loan, then each training/test example corresponds to a loan. The
features in X may include the borrower’s credit history, income level, and outstanding debts; the
label Y ∈ {0, 1} encodes whether the borrower defaulted on the loan; the sensitive attribute may be
the borrower’s gender or race.

Let P ∗ and P̃ be probability distributions on X ×A× Y . We consider P̃ as the distribution of the
training data and P ∗ as the distribution of data in a hypothetical target domain. For example, P ∗ may
be the distribution of data in the real world, and P̃ is a biased sample in which certain demographic
groups are underrepresented. The difference P ∗ − P̃ is the distribution shift. In practice, distribution
shifts often arise due to sampling biases during the (training) data collection process, so we call
P ∗ and P̃ unbiased and biased respectively and refer to P ∗ − P̃ as the bias (in the training data).
Henceforth E∗ (resp. Ẽ) will denote expectation under P ∗ (resp. P̃ ). The set of all hypotheses under
consideration is denoted byH and ` : Y × Y 7→ R+ denotes the loss function under consideration.
In Section 3 and 4 we assume the set of sensitive attribute A is discrete. The case with continuous A
is relegated to the supplementary document (Appendix 2).

3 Benefits and drawbacks of enforcing risk parity

To keep things simple, we start by considering the effects of enforcing risk parity (RP). This notion
is closely related to the notion of demographic parity (DP). Recall DP requires the output of the
ML model h(X) to be independent of the sensitive attribute A: h(X) ⊥ A. RP imposes a similar
condition on the risk of the ML model.
Definition 3.1 (risk parity). A model h satisfies risk parity with respect to the distribution P on
X × Y ×A if

EP

[
`(h(X), Y ) | A = a

]
= EP

[
`(h(X), Y ) | A = a′

]
for all a, a′ ∈ A and all h ∈ H.

RP is widely used in practice to measure algorithmic bias in ML models. For example, the US
National Institute of Standards and Technology (NIST) tested facial recognition systems and found
that the systems misidentify blacks at rates 5 to 10 times higher than whites [21]. By comparing the
error rates of the system on blacks and whites, NIST is implicitly adopting RP as its definition of
algorithmic fairness.

It is not hard to see that RP is equivalent to linear constraints on the risk profile (RP̃ (h)) of an ML
model with respect to P̃ :

RP (h) ,
{
EP

[
`(h(X), Y ) | A = a

]}
a∈A . (3.1)
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Figure 1: Fair risk minimization problem when there are two groups. Recall R is a set of risk
profiles and F is the set of risk profiles that satisfy risk parity. The horizontal and vertical coordinates
of the risk profiles represent the risk of the model on the majority and minority subpopulations.
In the left plot, we see the empirical risk minimization (ERM) optimal point R̃ and the fair risk
minimization (FRM) optimal point R̃F . In the center plot, we see that FRM can both improve and
harm performance in the target domain (as long as the assumptions of 3.2 are satisfied). The green
dotted line separates the P ∗A’s that lead to worse and improved performance in the target domain:
if P ∗A falls below the green line, then FRM harms performance in the target domain. In the right
plots, we reproduce this effect in a simulation. As the fraction of samples from the minority group
decreases in the target domain, there is a point beyond which enforcing fairness harms accuracy (in
the target domain). We refer to Appendix C for the simulation details.

For notational simplicity defineR as the set of all risk profiles with respect to the training distribution
P̃ , i.e. R , {R(h) | h ∈ H}. The risk profile of a model summarizes its performance on
subpopulations. In terms of risk profiles, RP with respect to distribution P requires RP (h) = c1
for some constant c ∈ R. This is a linear constraint. The set of all risk profiles that satisfy the RP
constraint with respect to the training distribution P̃ constitutes the following subspace:

FRP ≡ FRP(P̃ ) , {RP̃ (h) ∈ R|A|
∣∣ RP̃ (h) = c1,1 ∈ R|A|, c ∈ R}.

Therefore, we enforce RP by solving (the empirical version of) a constraint risk minimization problem
{

minh∈H Ẽ
[
`(h(X), Y )

]

subject to RP̃ (h) ∈ FRP

}
≡
{

minR∈R 〈P̃A, RP̃ (h)〉
subject to RP̃ (h) ∈ FRP

}
, (3.2)

where P̃A ∈ [0, 1]|A| is the marginal distribution of A and consequently 〈P̃A, R〉 = Ẽ
[
`(h(X), Y )

]
.

Note that, in (3.2), the inner product 〈·, ·〉 is euclidean inner product on R|A|. We define the minimizer
of (3.2) as h̃F and its corresponding risk profile as R̃F = RP̃ (h̃F ). See Figure 1 for a graphical
depiction of (3.2) when there are two groups (A = {0, 1}). Here we see the main benefit of
summarizing model performance with risk profiles: risk minimization problems are equivalent to
linear optimization problems in terms of risk profiles (objective and constrain functions are linear in
terms of risk profile). This allows us to simplify our study of the effects of enforcing risk parity by
reasoning about the risk profiles of the resulting models. Hereafter, we refer to this approach as fair
risk minimization (FRM). It is not new; similar constrained optimization problems have appeared in
the algorithmic fairness literature (e.g. see [1, 12, 10]). Our goal is evaluating whether this approach
mitigates algorithmic biases and improves model performance in the target domain. There are
efficient algorithms for solving (4.3). One popular algorithm is a reductions approach by Agarwal
et al. [1], which solves a sequence of weighted classification problems with appropriately chosen
weights to satisfy the desired algorithmic fairness constraints. This algorithm outputs randomized
classifiers, which justifies the subsequent convexity assumption on the set of risk profiles.

In order to relate model performance in the training and target domains, some restrictions on the
distribution shift/bias is necessary, as it is impossible to transfer performance parity during training to
the target domain if they are highly disparate. At a high-level, we assume the distribution shift is a
subpopulation shift [16]. Formally, we assume that the risk profiles of the models with respect to P ∗

and the profiles with respect to P̃ are identical:

E∗
[
`(h(X), Y ) | A = a

]
= Ẽ

[
`(h(X), Y ) | A = a

]
for all a ∈ A, h ∈ H. (3.3)
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i.e. RP̃ (h) = RP∗(h) for all h ∈ H. We note that this assumption is (slightly) less restrictive than the
usual subpopulation shift assumption because it only requires the expected value of the loss (instead
of the full conditional distribution of (X,Y ) givenA to be identical in the training and target domains.
Furthermore, this assumption is implicit in enforcing risk-based notions of algorithmic fairness. If
the risk profiles are not identical in the training and target domains, then enforcing risk-based notions
of algorithmic fairness during training is pointless because performance parity during training may
not generalize to the target domain. We are now ready to state our characterization of the benefits
and drawbacks of enforcing RP. To keep things simple, we assume there are only two groups: a
majority group and a minority group. As we shall see, depending on the marginal distribution of the
subpopulations in the target domain P ∗A, enforcing RP can harm or improve overall performance in
the target domain.

Theorem 3.2. Without loss of generality, let first entry of P̃A be the fraction of samples from the
majority group in the training data i.e. P̃ (A = 1). Assume

1. there are only two groups and the set of risk profilesR ⊆ R2;
2. subpopulation shift: the risk profiles with respect to P̃ and P ∗ are identical;
3. (R̃1, R̃0) = R̃ , arg minR∈R〈P̃A, R〉 is the risk profile of the risk minimizer;
4. ((R̃F )1, (R̃F )0) = R̃F , arg minR∈R∩FRP

〈P̃A, R〉 is the risk profile of the fair risk minimizer.

Then we have:

〈P ∗A, R̃〉
{
≤ 〈P ∗A, R̃F 〉 if P ∗(A = 1) ≥ R̃0−(R̃F )0

R̃0−R̃1

≥ 〈P ∗A, R̃F 〉 otherwise .

Therefore, enforcing RP harms overall performance in the target domain in the first case, while
improves in the second.

In hindsight, this result is intuitive. If P ∗A is close to P̃A (e.g. the minority group is underrepresented
in the training data but not by much), then enforcing RP may actually harm overall performance in
the target domain. This is mainly due to the trade-off between accuracy and fairness in the IID setting
(no distribution shift). If there is little difference between the training and target domains, then we
expect the trade-off between accuracy and fairness to manifest (albeit to a lesser degree than in IID
settings).

4 Benefits and drawbacks of enforcing conditional risk parity

4.1 Risk-based notions of algorithmic fairness

In this section, we consider more general risk-based notions of algorithmic fairness, namely Condi-
tional Risk Parity (CRP) which is defined as follows:
Definition 4.1 (Conditional Risk Parity). a model h ∈ H is said to satisfy CRP if:

EP

[
`(h(X), Y ) | A = a, V = v

]
= EP

[
`(h(X), Y ) | A = a′, V = v

]
(4.1)

for all a, a′ ∈ A, v ∈ V , where V is known as the discriminative attribute [18].

To keep things simple, we assume V is finite-valued, but it is possible to generalize our results to
risk-based notions of algorithmic fairness with more general V ’s (see Appendix B). We also point out
that this definition of CRP does not cover calibrations where one conditions on the model outcome Ŷ .

It is not hard to see that risk parity is a special case of (4.1) in which V is a trivial random variable.
Another prominent instance is when V = Y , i.e. the risk profile satisfies:

EP

[
`(h(X), Y ) | A = a, Y = y

]
= EP

[
`(h(X), Y ) | A = a′, Y = y

]

for all a, a′ ∈ A, y ∈ Y . Definition 4.1 is motivated by the notion of equalized odds (EO) [14]
in classification. Recall EO requires the output of the ML model h(X) to be independent of the
sensitive attribute A conditioned on the label: h(X) ⊥ A | Y . CRP imposes a similar condition
on the risk of the ML model; i.e. the risk of the ML model must be independent of the sensitive
attribute conditioned on the discriminative attribute (with label as a special case). Therefore CRP can
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be viewed as a general version of EO, where we relax the conditional independence of h to equality
of conditional means. CRP is also closely related to error rate balance [9] and overall accuracy
equality [5] in classification.

Like RP, (4.1) is equivalent to linear constraints on the risk profiles of ML models. Here (with a
slight abuse of notation) we define the risk profile of a classifier h under distribution P as:

RP (h) ,
{
EP

[
`(h(X), Y ) | A = a, V = v

]}
a∈A,v∈V (4.2)

Compared to (3.1), (4.2) offers a more detailed summary of the performance of ML models on
subpopulations that not only share a common value of the sensitive attribute A, but also a common
value of the discriminative attribute V . The general fairness constraint (4.1) on the training distribution
P̃ is equivalent to RP̃ (h) ∈ FCRP, where FCRP is a linear subspace defined as:

FCRP , {RP̃ (h) ∈ R|A|×|Y| | RP̃ (h) = 1u>,1 ∈ R|A|,u ∈ R|Y|, h ∈ H}.
In this section, we study a version of (3.2) with this general notions of algorithmic fairness:

{
minh∈H Ẽ

[
`(h(X), Y )

]

subject to RP̃ (h) ∈ FCRP

}
=

{
minR∈R 〈P̃A,V , R〉
subject to R ∈ FCRP

}
, (4.3)

where P̃A,V ∈ [0, 1]|A|×|V| is the marginal distribution of (A, V ), i.e. 〈P̃A,V , R〉 = Ẽ
[
`(h(X), Y )

]
.

As before we define the minimizer of (4.3) as h̃F and its corresponding risk profile as R̃F = RP̃ (h̃F ).
We note that (4.2) has the same benefit as the definition in (3.1): the fair risk minimization problem in
(4.3) is equivalent to a linear optimization problem in terms of the risk problems. This considerably
simplifies our study of the efficacy of enforcing risk-based notions of algorithmic fairness.

4.2 Subpopulation shift in the training data

Similar to equation (3.3), we assume that the risk profiles with respect to P ∗ and P̃ are identical:

E∗
[
`(h(X), Y ) | A = a, V = v

]
= Ẽ

[
`(h(X), Y ) | A = a, V = v

]
∀ a ∈ A, v ∈ V , h ∈ H .

(4.4)
i.e. RP̃ (h) = RP∗(h) for all h ∈ H. This definition of subpopulation shift (equation (4.4)) is
borrowed from the domain adaptation literature (see [16, 19]). The difference in our definition is
that we require equality of the expectations of the loss functions, whereas these works assume the
distributions to be equal for the sub-populations. Note that under subpopulation shift RP̃ are RP? are
equal overH. In the remaining part of Section 4 we shall drop the probability in subscript and denote
them as R. We note the crucial role of the discriminative attributes in (4.4): the risk profiles are only
required to be identical on subpopulations that share a value of the discriminative attribute. A good
choice of discriminative attributes keeps the training data informative by ensuring the risk profiles
are identical on the training data and at test time. Here are two examples of good discriminative
attributes.
Example 4.2 (Under-representation bias). In binary classification, training data may suffer from
under-representation bias. This kind of bias arises when positive examples from disadvantaged
groups are under-represented in the training data. Here is an example of a data generating process
that suffers from label bias: (i) sample training examples (Xi, Yi, Ai) from P ∗, (ii) discard training
examples from the disadvantaged group (Ai = 0) with positive label (Yi = 1) with probability β.
This leads to

P̃ (X,Y,A) ∝ P ∗(X,Y,A) · (1− (1− β)1{A = 0, Y = 1}).
Because there are fewer positive examples from the disadvantaged group in the training data (com-
pared to test data), this kind of bias causes the ML model to predict mostly negative outcomes for the
disadvantaged group. In practice, this kind of bias may creep into the training data more subtly. For
example, if human judgements is a crucial part of the data generating process, then implicit biases
may lead to over-representation of negative examples from disadvantaged groups in the training data
[24].

For training data with underrepresentation bias, a good choice of discriminative attribute is the
label. This is because the training data is a filtered version of the data at test time, and the filtering
process only depends on the label (and sensitive attribute). Thus the class conditionals at test time
are preserved in the training data; i.e. P̃X|a,y = P ∗X|a,y for all a ∈ A, y ∈ Y .
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Figure 2: Example in which enforcing algorithmic fairness harms performance in the target domain
despite the Bayes decision rule in the target domain satisfying the algorithmic fairness constraint.

4.3 Fair risk minimization may not improve overall performance

We start by showing that fair risk minimization may not improve overall performance. Without other
stipulations, this is implied by a result similar to Theorem 3.2 for more general risk-based notions
of algorithmic fairness. Perhaps more surprising, is fair risk minimization may not improve overall
performance even if the Bayes decision rule in the target domain is algorithmically fair:

arg minR∈R〈P ∗A,V , R〉 ⊆ FCRP.

Figure 2 shows such a problem instance. The triangle is the set of risk profiles, and the dotted bottom
of the triangle intersects the fair constraint (i.e. the risk profiles on the dotted line are algorithmically
fair). The training objective P̃ is chosen so that the risk profile of (unconstrained) risk minimizer
on biased training data R̃ is the vertex on the top and the risk profile of fair risk minimizer (also on
biased training data) R̃F is the vertex on left. The test objective points to the right, so points close
to the right of the triangle have the best overall performance in the target domain. We see that R̃
is closer to the right of the triangle than R̃F , which immediately implies 〈P ∗, R̃〉 ≤ 〈P ∗, R̃F 〉, i.e.
it has better performance in the target domain in comparison to R̃F . This counterexample is not
surprising: the assumption that R∗ is fair is a constraint on P ∗,R, and F ; it imposes no constraints
on P̃ . By picking P̃ adversarially, it is possible to have 〈P ∗, R̃〉 ≤ 〈P ∗, R̃F 〉.

4.4 When does fair risk minimization improve overall performance

E[ (f(X), Y)|A = 0]

E[
(f(

X)
,Y

)|A
=

1]

P *

R *

Figure 3: Total recovery from training bias
by enforcing risk parity. In this example, the
training bias P̃ − P ∗ is always orthogonal to
the risk parity constraint (blue line) because
P̃ and P ∗ are probability distributions. When
the training bias does not affect the risk pro-
files, enforcing risk parity allows us to totally
overcome the training bias. Unfortunately, to
show an example in which the risk decom-
poses into recoverable and non-recoverable
parts, we need (at least) two more dimensions.

The main result in this section provides necessary
and sufficient conditions for recovering the unbiased
Bayes’ classifier with (4.3). As the unbiased Bayes’
classifier is the (unconstrained) optimal classifier in
the target domain, enforcing a risk-based notion of al-
gorithmic fairness will improve overall performance
in the target domain if it recovers the unbiased Bayes’
classifier.

At first blush, it is tempting to think that because the
unbiased Bayes classifier satisfies CRP, then enforc-
ing this constraint always increases accuracy, this is
not the case as described in the previous paragraph.
Our next theorem characterizes the precise condition
under which it is possible to improve accuracy on the
target domain by enforcing fairness constraint:
Theorem 4.3. Under the assumptions

1. The risk setR is convex.
2. The risk profiles with respect to P̃ and P ∗ are

identical.
3. The unconstrained risk minimizer on un-

biased data is algorithmically fair; i.e.
arg minR∈R〈P ∗, R〉 ⊆ FCRP.

the fair risk minimization (4.3) obtains h ∈ H such
that R(h) = R∗ if and only if

ΠF (P ∗A,V − P̃A,V )− P ∗A,V ∈ NR(R∗) + F⊥CRP, (4.5)
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where P ∗A,V (resp. P̃A,V ) is the marginal of P ∗ (resp. P̃ ) with respect to (A, V ), R∗ is the optimal
risk profile with respect to P ∗, NR(R∗) is the normal cone ofR at R∗ and ΠF is the projection on
the fair hyperplane.

This assumption that R is convex is innocuous because it is possible to convexify the risk set by
considering randomized decision rules. To evaluate a randomized decision rule H , we sample a
decision rule h from H and evaluate h. It is not hard to see that the risk profiles of randomized
decision rules are convex combinations of the risk profiles of (non-randomized) decision rules, so
including randomized decision rules convexifies the risk set. The third assumption is necessary for
recovery of the unbiased Bayes classifier. If the unbiased Bayes classifier is not algorithmically
fair, then there is no hope for (4.3) to recover it as there will always be a non-negligible bias term.
This assumption is also implicit in large swaths of the algorithmic fairness literature. For example,
Buolamwini and Gebru [7] and Yang et al. [23] suggest collecting representative training data to
improve the accuracy of computer vision systems on individuals from underrepresented demographic
groups. This suggestion implicitly assumes the Bayes classifier on representative training data is
algorithmically fair.

Theorem 4.3 characterizes the biases in the training data from which can be completely removed
by enforcing appropriate algorithmic fairness constraints. The key insight from this theorem is
a decomposition of the training bias into two parts: a part orthogonal to the fair constraint and
the remaining part in NR(R∗). Enforcing an appropriate risk-based notion of algorithmic fairness
overcomes the first part of the bias. This occurs regardless of the magnitude of this part of the bias
(see Corollary 4.4), which is also evident from our computational results. The second part of the bias
(the part inNR(R∗)) represents the “natural” robustness of R∗ to changes in P ∗: if P̃ is inNR(R∗),
then the unconstrained risk minimizer on training data remains R∗. The magnitude of the bias in this
set cannot be too large, and enforcing algorithmic fairness constraints does not help overcome this
part of the bias. Although we stated our main result only for finite-valued discriminative attributes
for simplicity of exposition, please see Appendix 2 for a more general version of Theorem 4.3 that
applies to more general (including continuous-valued) discriminative attributes.

Corollary 4.4. A sufficient condition for (4.5) is P̃A,V − P ∗A,V ∈ F⊥CRP.

Corollary 4.4 allows large differences between P̃A,V and its unbiased counterpart P ∗A,V , as long as
the differences are confined to F⊥. Intuitively, (4.3) enables practitioners to recover from large biases
in F⊥ because the algorithmic fairness constraint “soaks up” any component of P̃A,V in F⊥. We
explore the implications of Corollary 4.4 for risk parity and CRP.

Risk Parity: For RP, V is trivial random variable, hence P̃A − P ∗A ∈ F⊥RP means that it has mean
0. This is true for any P̃A as 〈P ∗A, 1〉 = 〈P̃A, 1〉 = 1. Hence, the Bayes’ classifier can be recovered
under any perturbation. More specifically, recall the example of women historically underrepresented
in STEM fields mentioned in the Introduction. Such training data is biased in its gender representation
which differs at test time where women are better represented. Classifiers trained on biased data with
the risk Parity fairness constraint will generalize better at test time.

Conditional risk parity: In this case V = Y and the condition P̃A,Y − P ∗A,Y ∈ F⊥CRP implies that
the sum of each column of P̃A,Y − P ∗A,Y must be 0. Hence, to recover the Bayes classifier under
equalized odds fairness constraints, we are allowed to perturb P ∗A,Y in such a way, that they have
the same column sums: i.e. for any label, we are allowed to perturb the distribution of protected
attributes for that label, but we have to keep the marginal distribution of the label to be same for both
P̃A,Y and P ∗A,Y .

In practice, it is unlikely that the training bias is exactly orthogonal to the fair constraint, which
happens only if the second part of the bias (i.e. the part in the normal cone at R∗) is small enough.
Theorem 4.3 provides a general characterization along with a precise notion of this “small enough”
condition.
Remark 4.5. Theorem 4.3 can further be generalized for any discrete/continuous A and V (as
defined in (4.1), the proof for the continuous case can be found in the supplementary document).
Thus, our theory applies to many fairness constraints which fall under the setup in Equation (4.1),
where V can be any discriminative attribute. However, our conditions do not cover calibration where
one conditions on the model outcome Ŷ .
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4.5 Related work

Most of the prior works on algorithmic fairness assume fairness is an intrinsically desirable property
of an ML model, but this assumption is unrealistic in practice [1, 11, 25]. There is a small but
growing line of work on how enforcing fairness helps ML models recover from bias in the training
data. Kleinberg and Raghavan [15], Celis et al. [8] consider strategies for correcting biases in hiring
processes. They show that correcting the biases not only increases the fraction of successful applicants
from the minority group but also boosts the quality of successful applicants. Dutta et al. [13] study
the accuracy-fairness trade-off in binary classification in terms of the separation of the classes within
the protected groups. They explain the accuracy-fairness trade-off in terms of this separation and
propose a way of achieving fairness without compromising separation by collecting more features.

Blum and Stangl [6] study how common group fairness criteria help binary classification models
recover from bias in the training data. In particular, they show that the equal opportunity criteria [14]
recovers the Bayes classifier despite under-representation and labeling biases in the training data. Our
results complement theirs. Instead of comparing the effects of enforcing various fairness criteria on
training data with two types of biases, we characterize the types of biases that the fairness criteria
help overcome. Our results also reveal the geometric underpinnings of the constants that arise in
Blum and Stangl’s results. Three other differences between our results and theirs are: (i) they only
consider binary classification, while we consider all ML tasks that boil down to risk minimization, (ii)
they allow some form of posterior drift (so the risk profiles of the models inH with respect to P ∗ and
P̃ may differ in some ways), but only permit marginal drift in the label (V = Y ), (iii) their conditions
are sufficient for recovery of the fair Bayes decision rule (in their setting), while our conditions are
also necessary (in our setting).

5 Computational results

We verify the theoretical findings of the paper empirically. Our goal is to show that an algorithm
trained with fairness constraints on the biased train data P̃ achieves superior performance on the true
data generating P ∗ at test time in comparison to an algorithm trained without fairness considerations.

There are several algorithms in the literature that offer the functionality of empirical risk minimization
subject to various fairness constraints, e.g. Cotter et al. [11] and Agarwal et al. [1]. Any such
algorithm will suffice to verify our theory. In our experiments we use Reductions fair classification
algorithm [1] with logistic regression as the base classifier. For the fairness constraint we consider
Equalized Odds [14] (EO) — one of the major and more nuanced fairness definitions. We refer to
Reductions algorithm trained with loose EO violation constraint as baseline and Reductions trained
with tight EO violation constraint as fair classifier (please see Appendix 3 for additional details and
supplementary material for the code).
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Figure 4: Test acc. on P ∗ and P̃ when
trained on the (biased) data from P̃ .

Simulations.

We first verify the implications of Corollary 4.4 using
simulation studies. We follow the Conditional risk par-
ity scenario from Section 4. Specifically, consider a bi-
nary classification problem with two protected groups, i.e.
Y ∈ {0, 1} and A ∈ {0, 1}. We set P ∗ to have equal rep-
resentation of protected groups conditioned on the label
and biased data P̃ to have one of the protected groups un-
derrepresented. Specifically, let pay = PA=a,Y=y , i.e. the
a, y indexed element of PA,Y ; pay = 0.25 ∀a, y for P ∗

and p1y = pminor, p0y = pmajor = 0.5 − pminor for P̃ .
For both P ∗ and P̃ we fix class marginals p·0 = p·1 = 0.5
and generate Gaussian features X|A = a, Y = y ∼
N (µay,Σay) in 2-dimensions (see additional data gen-
erating details in Appendix C). In Figure 5 we show a
qualitative example of simulated train data from P̃ with pminor = 0.1 and test data from P ∗, and the
corresponding decision boundaries of a baseline classifier and a classifier trained with the Equalized
Odds fairness constraint (irregularities in the decision heatmaps are due to stochasticity in the Reduc-
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Figure 5: Decision heatmaps for (left) baseline on train data from P̃ ; (center left) fair classifier on
train data from P̃ ; (center right) baseline on test data from P ∗; (right) fair classifier on test data from
P ∗. Decision boundary of the fair classifier has larger slope better accounting for the group a = 1
underrepresented in the train data. Consequently its performance is better on the unbiased test data.

tions prediction rule). In this example fair classifier is 3% more accurate on the test data and 1% less
accurate on a biased test data sampled from P̃ (latter not shown in the figure)

We proceed with a quantitative study by varying degree of bias in P̃ via changing pminor in
[0.01, 0.25] and comparing performance of the baseline and fair classifier on test data from P ∗

and P̃ . We present results over 100 runs of the experiment in Figure 4. Notice that the sum of each
column of P̃A,Y −P ∗A,Y is 0 for any value of pminor and we observe that the fair classifier has almost
constant accuracy on P ∗ (consistently outperforming the baseline), as predicted by Corollary 4.4.
The largest bias in the training data corresponds to pminor = 0.01, where baseline is erroneous on
the whole a = 1, y = 0 subgroup (cf. Figure 5) resulting in close to 75% accuracy corresponding
to the remaining 3 (out of 4) subgroups. For pminor = 0.05 minority group acts as outliers causing
additional errors at test time resulting in the worst performance overall. When pminor = 0.25,
P̃ = P ∗ and all methods perform the same as expected. Results on P̃ correspond to the case where
test data follows same distribution as train data, often assumed in the literature: here baseline can
outperform fair classifier under the more extreme sampling bias conditions, i.e. pminor ≤ 0.1. We
note that as the society moves towards eliminating injustice, we expect test data in practice to be
closer to P ∗ rather then replicating biases of the historical train data P̃ .

Table 1: Accuracy on COMPAS data

TEST ON P ∗ TEST ON P̃

FAIR 0.652±0.013 0.660±0.009
BASELINE 0.634±0.011 0.668±0.010

Recidivism prediction on COMPAS data. We
verify that our theoretical findings continue to
apply on real data. We train baseline and fair
classifier on COMPAS dataset [3]. There are
two binary protected attributes, Gender (male
and female) and Race (white and non-white),
resulting in 4 protected groups A ∈ {0, 1, 2, 3}.
The task is to predict if a defendant will re-
offend, i.e. Y ∈ {0, 1}. We repeat the experiment 100 times, each time splitting the data into
identically distributed 70-30 train-test split, i.e. P̃ for train and test, and obtaining test set from P ∗

by subsampling test data to preserve Y marginals and enforcing equal representation at each of the 4
levels of the protected attribute A. Equal representation of the protected groups in P ∗ is sufficient
for satisfying the assumption 3 of Theorem 4.3 under an additional condition that noise levels are
similar across protected groups. For Conditional Risk Parity, condition in eq. (4.5) of Theorem 4.3 is
satisfied as long as P̃ and P ∗ have the same Y marginals. Thus, we expect that enforcing EO will
improve test accuracy on P ∗ in this experiment.

We present results in Table 1. We see that our theory holds in practice: accuracy of the fair classifier
is 1.8% higher on P ∗. Baseline is expectedly more accurate on the biased test data from P̃ , but
only by 0.8%. We present results for the same experimental setup on the Adult dataset [4] in Table
2 in Appendix C. We observe same pattern: in comparison to the baseline, fair classifier increases
accuracy on P ∗, but is worse on the biased test data from P̃ .
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6 Summary and discussion

In this paper, we studied the efficacy of enforcing common risk-based notions of algorithmic fairness
in a subpopulation shift setting. This study is motivated by a myriad of examples in which algorithmic
biases are traced back to subpopulations shifts in the training data (see [7, 22]). We show that
enforcing risk-based notions of algorithmic fairness may harm or improve the performance of
the trained model in the target domain. Our theoretical results precisely characterize when fair
risk minimization harms and improves model performance. Practitioners should be careful and
actually check that enforcing fairness is improving model performance in the target domain. For
example, consider the Gender Shades [7] study which shows that the commercial gender classification
algorithms are less accurate on dark-skinned individuals. A practitioner may attempt to mitigate this
algorithmic bias by enforcing a RP, which leads to a fair model that sacrifices some performance on
lighter-skinned individuals in exchange for improved accuracy on darker skinned individuals. Taking
a step back, one of the main takeaways of our study is by considering whether enforcing a particular
notion of algorithmic fairness improves model performance in the target domain, it is possible to
compare algorithmic fairness practices in a purely statistical way. We hope this alleviates one of
the barriers to broader adoption of algorithmic fairness practices: it is often unclear which fairness
definition to enforce.
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